\square

SECTION -A

ANSWER ALL THE QUESTIONS:

1. What is the expression for $\tan n \theta$ in terms of $\tan \theta$.
2. Write the formula for expansions of $\cos \theta$ and $\sin \theta$.
3. Write the logarithm of $x+i y$ and find the value of $\log (1+i)$.
4. Prove that (i) $\cosh ^{2} x-\sinh ^{2} x=1$, (ii) $\cosh ^{2} x+\sinh ^{2} x=\cosh 2 x$.
5. If A and B are similar matrices then, prove that they have same characteristic equation.
6. State Cayley - Hamilton theorem.
7. Define directrix of the parabola.
8. If the polar of P passes through Q, then prove that the polar of Q passes through P.
9. Define polar co-ordinate.
10. Define polar equation of a conic.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
(5 X $8=40$)
11. Express $\cos 8 \theta$ in terms of $\sin \theta$.
12.If $\frac{\sin \theta}{\theta}=\frac{5045}{5046}$, show that $\theta=1^{\circ} 58^{\prime}$ approximately.
13.If $\sin (A+i B)=x+i y$, prove that (i) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$
(ii) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$

14 . Find the general value of $\log _{(-3)}(-2)$.
15.Find the eigenvalues of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
16. Find the locus of the poles of all tangents to the parabola $y^{2}=4 a x$ with the parabola $y^{2}=4 b x$.
17. Find the locus of the mid-point of chords of the parabola which subtend a right angle at the vertex of the parabola.
18. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

SECTION - C

ANSWER ANY TWO QUESTIONS:
$(2 \times 20=40)$
19.a) Express $\frac{\sin 6 \theta}{\sin \theta} \mathrm{i}$ in terms of $\cos \theta$.
b) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiples of $\theta \cdot(\mathbf{1 0 + 1 0})$
20. a) Separate into real and imaginary parts of $\tan ^{-1}(x+i y)$.
b) Reduce $(\alpha+i \beta)^{x+i y}$ to the form $A+i B .(\mathbf{1 0 + 1 0})$
21. Find the diagonalize of the matrix $\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.
22. a) Show that the locus of the intersection of tangents to $y^{2}=4 a x$ which intercept a constant length d on the directrix is
$\left(y^{2}-4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
b) Trace the curve $\frac{10}{r}=3 \cos \theta+4 \sin \theta+5 \cdot(\mathbf{1 0 + 1 0})$

