LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

SECTION -A

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

FIRST SEMESTER – NOVEMBER 2018

MT 1503– ANALYTICAL GEOMETRY OF 2D,TRIG. & MATRICES

Date: 31-10-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

(10 X 2 = 20)

(5 X 8 = 40)

ANSWER ALL THE QUESTIONS:

- 1. What is the expression for $\tan n\theta$ in terms of $tan\theta$.
- 2. Write the formula for expansions of $cos\theta$ and $sin\theta$.
- 3. Write the logarithm of x + iy and find the value of Log(1 + i).
- 4. Prove that (i) $cosh^2x sinh^2x = 1$, (ii) $cosh^2x + sinh^2x = cosh2x$.
- 5. If A and B are similar matrices then, prove that they have same characteristic equation.
- 6. State Cayley Hamilton theorem.
- 7. Define directrix of the parabola.
- 8. If the polar of P passes through Q, then prove that the polar of Q passes through P.
- 9. Define polar co-ordinate.
- 10. Define polar equation of a conic.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

- 11.Express $\cos 8\theta$ in terms of $\sin \theta$.
- 12. If $\frac{\sin \theta}{\theta} = \frac{5045}{5046}$, show that $\theta = 1^{\circ}58'$ approximately.
- 13. If $\sin(A+iB) = x + iy$, prove that (i) $\frac{x^2}{\sin^2 A} \frac{y^2}{\cos^2 A} = 1$

(ii)
$$\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$$

14. Find the general value of $log_{(-3)}(-2)$.

15. Find the eigenvalues of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.

- 16. Find the locus of the poles of all tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$.
- 17. Find the locus of the mid-point of chords of the parabola which subtend a right angle at the vertex of the parabola.
- 18. Find the asymptotes of the hyperbola
 - $3x^2 5xy 2y^2 + 17x + y + 14 = 0.$

SECTION - C

ANSWER ANY TWO QUESTIONS:

(2 X 20 = 40)

- 19.a) Express $\frac{\sin \theta}{\sin \theta}$ in terms of $\cos \theta$.
 - b) Expand $sin^3\theta cos^5\theta$ in a series of *sines* of multiples of θ .(10+10)
- 20. a) Separate into real and imaginary parts of $tan^{-1}(x + iy)$.
 - b) Reduce $(\alpha + i\beta)^{x+iy}$ to the form A + iB.(10+10)
- 21. Find the diagonalize of the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.
- 22. a) Show that the locus of the intersection of tangents to $y^2 = 4ax$ which intercept a constant length d on the directrix is

 $(y^2 - 4ax)(x + a)^2 = d^2x^2.$

b) Trace the curve $\frac{10}{r} = 3\cos\theta + 4\sin\theta + 5.(10+10)$
